Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
J Ovarian Res ; 17(1): 89, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671471

RESUMEN

BACKGROUND: Yu Linzhu (YLZ) is a classical Chinese traditional formula, which has been used for more than 600 years to regulate menstruation to help pregnancy. However, the mechanism of modern scientific action of YLZ needs to be further studied. METHODS: Thirty SD female rats were divided into three groups to prepare the blank serum and drug-containing serum, and then using UHPLC-QE-MS to identify the ingredients of YLZ and its drug-containing serum. Twenty-four SD female rats were divided into four groups, except the control group, 4-vinylcyclohexene dicycloxide (VCD) was intraperitoneally injected to establish a primary ovarian insufficiency (POI) model of all groups. Using vaginal smear to show that the estrous cycle of rats was disturbed after modeling, indicates that the POI model was successfully established. The ELISA test was used to measure the follicle-stimulating hormone (FSH), estradiol (E2), and anti-Mullerian hormone (AMH) levels in the serum of rats. HE stain was used to assess the morphology of ovarian tissue. The localization and relative expression levels of CX43 protein were detected by tissue immunofluorescence. Primary ovarian granulosa cells (GCs) were identified by cellular immunofluorescence. CCK8 was used to screen time and concentration of drug-containing serum and evaluate the proliferation effect of YLZ on VCD-induced GCs. ATP kit and Seahorse XFe24 were used to detect energy production and real-time glycolytic metabolism rate of GCs. mRNA and protein expression levels of HIF1α, CX43, PEK, LDH, HK1 were detected by RT-PCR and WB. RESULTS: UHPLC-QE-MS found 1702 ingredients of YLZ and 80 constituents migrating to blood. YLZ reduced the FSH while increasing the AMH and E2 levels. In ovarian tissues, YLZ improved ovarian morphology, follicle development, and the relative expression of CX43. In vitro studies, we found that YLZ increased the proliferative activity of GCs, ATP levels, glycolytic metabolic rate, HIF1α, CX43, PEK, HK1, LDH mRNA, and protein levels. CONCLUSIONS: The study indicated that YLZ increased the proliferation and glycolytic energy metabolism of GCs to improve follicular development further alleviating ovarian function.


Asunto(s)
Proliferación Celular , Conexina 43 , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Metabolismo Energético , Células de la Granulosa , Subunidad alfa del Factor 1 Inducible por Hipoxia , Insuficiencia Ovárica Primaria , Animales , Femenino , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratas , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Metabolismo Energético/efectos de los fármacos , Conexina 43/metabolismo , Conexina 43/genética , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
2.
Aging (Albany NY) ; 16(5): 4541-4562, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38428403

RESUMEN

Ningxin-Tongyu-Zishen formula (NTZF) is a clinical experience formula for the treatment of premature ovarian insufficiency (POI) in traditional Chinese medicine (TCM), and the potential mechanism is unknown. For in vivo experiments, POI mouse models (C57BL/6 mice), were constructed by subcutaneous injection of D-galactose (D-gal, 200 mg/kg). After treatment of NTZF (10.14, 20.27, 40.54 g/kg;) or estradiol valerate (0.15 mg/kg), ovarian function, oxidative stress (OS) and protein expression of Sirt1/p53 were evaluated. For in vitro experiments, H2O2 (200 µM) was used to treat KGN to construct ovarian granulosa cells (OGCs) cell senescence model. Pretreatment with NTZF (1.06 mg/mL) or p53 inhibitor (Pifithrin-α, 1 µM) was performed before induction of senescence, and further evaluated the cell senescence, OS, mRNA and protein expression of Sirt1/p53. In vivo, NTZF improved ovarian function, alleviated OS and Sirt1/p53 signaling abnormalities in POI mice. In vitro experiments showed that NTZF reduced the level of OS and alleviated the senescence of H2O2-induced KGN. In addition, NTZF activated the protein expression of Sirt1, inhibited the mRNA transcription and protein expression of p53 and p21. Alleviating OGCs senescence and protecting ovarian function through Sirt1/p53 is one of the potential mechanisms of NTZF in the treatment of POI.


Asunto(s)
Galactosa , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratones , Animales , Galactosa/toxicidad , Sirtuina 1/genética , Sirtuina 1/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ratones Endogámicos C57BL , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/genética , Células de la Granulosa/metabolismo , Senescencia Celular , ARN Mensajero/metabolismo
3.
J Ethnopharmacol ; 326: 117944, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38382656

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Mey., one of the most used herbs in the world, shows effective treatment in reproductive injury. Recent studies have proven that the processed product, red ginseng, which is more active than ginseng itself. Therefore, it is speculated that its main functional component, rare ginsenosides (heat-transformed saponin, HTS), may be effective in treating premature ovarian failure (POF), but its efficacy has not yet been experimentally confirmed. AIM OF THE STUDY: To evaluate whether HTS could attenuate cyclophosphamide-induced inflammation and oxidative damage in POF model rats and the human granulosa-like KGN cell line and protect granulosa cell proliferation. MATERIAL AND METHODS: HTS were isolated from ginsenosides and high performance liquid chromatography (HPLC) analysis was used to analyze the HTS components. Cyclophosphamide (CP) was used to establish a POF rat model and KGN cell injury model. Reactive oxygen species (ROS) and antioxidant enzyme production was determined using specific assays, while inflammatory cytokine secretion was measured by enzyme-linked immunosorbent assay (ELISA). The proliferative function of granulosa cells was assessed using high-content screening and immunohistochemistry to determine the Ki67 protein level. Protein expression in ovarian tissues and KGN cells was analyzed by Western blotting, quantitative real-time PCR (qRT-PCR) was used to determine the transcriptional changes in ovarian tissues and KGN cells. RESULTS: In CP-treated POF model rats, HTS significantly decreased malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels, increased glutathione oxidase (GSH) levels, and upregulated Ki67 expression in ovarian granulosa cells. In addition, HTS significantly increased cell survival and Ki67 expression levels in CP-treated cells, and superoxide dismutase (SOD) levels were significantly increased. HTS significantly downregulated IL-6, TNF-α, and interleukin-1ß (IL-1ß) mRNA expression and significantly inhibited nuclear factor kappa-B p65 (NF-κB p65) and p38 mitogen activated protein kinase (p38 MAPK) phosphorylation in POF model rats and KGN cells. Moreover, NF-κB p65 and p38 MAPK levels were significantly increased in ovarian granulosa cells. p65 and p38 protein and gene expression was significantly downregulated. CONCLUSION: HTS ameliorated CP-induced POF and human granulosa cell injury, possibly by inhibiting inflammation and oxidative damage mediated by the p38 MAPK/NF-κB p65 signaling pathway.


Asunto(s)
Ginsenósidos , Insuficiencia Ovárica Primaria , Ratas , Humanos , Animales , Femenino , FN-kappa B/metabolismo , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Antígeno Ki-67/metabolismo , Sistema de Señalización de MAP Quinasas , Inflamación/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
J Ethnopharmacol ; 326: 117955, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395181

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gui Shen Wan (GSW) stands out as a promising therapeutic approach for addressing Premature Ovarian Insufficiency (POI). With deep roots in traditional medicine, GSW highlights the ethnopharmacological significance of herbal interventions in addressing nuanced aspects of women's health, with a specific emphasis on ovarian functionality. Recognizing the importance of GSW in gynecological contexts resonates with a rich tradition of using botanical formulations to navigate the intricacies of reproductive health. Delving into GSW's potential for treating POI emphasizes the crucial role of ethnopharmacological insights in guiding modern research endeavors. AIM OF THE STUDY: GSW is extensively utilized in gynecological disorders and has recently emerged as a potential therapeutic approach for POI. The present investigation aimed to assess the efficacy of GSW in treating POI in rats and elucidate its underlying molecular mechanisms. MATERIALS AND METHODS: The study employed GSW for POI treatment in rats. GSW, prepared as pills, underwent HPLC fingerprinting for quality control. Reagents and drugs, including VCD and dehydroepiandrosterone (DHEA), were sourced from reputable providers. Eighty Sprague-Dawley rats were categorized into groups for POI induction and treatment. Ovarian tissue underwent HE staining, immunohistochemical staining, Western Blot, qRT-PCR, and vaginal secretion testing. ELISA was utilized for target molecule detection. This methodology ensures a robust and reliable experimental framework. RESULTS: The results highlight a robust collaborative improvement in POI among rats subjected to combined GSW and DHEA treatment. Particularly noteworthy is the substantial enhancement in the expression of vascular regeneration-related molecules-VDR-Klotho-VEGFR-accompanied by a significant elevation in autophagy levels. Post-GSW administration, rat ovarian morphology demonstrated increased stability, hormone levels exhibited more consistent maintenance, and there was a marked reduction in inflammatory response compared to other groups (p < 0.01). Furthermore, GSW intervention resulted in a more pronounced upregulation of ovarian autophagy (p < 0.05). CONCLUSION: By modulating VDR-Klotho signaling, GSW exerts regulatory control over ovarian autophagy and vascular regeneration, thereby mitigating the occurrence and progression of POI in rats.


Asunto(s)
Menopausia Prematura , Insuficiencia Ovárica Primaria , Humanos , Ratas , Femenino , Animales , Angiogénesis , Ratas Sprague-Dawley , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/metabolismo , Deshidroepiandrosterona/uso terapéutico , Receptores de Calcitriol
5.
Free Radic Res ; 58(2): 107-116, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408280

RESUMEN

BACKGROUND: Oxidative stress injury is an important pathological factor of premature ovarian failure (POF). Salidroside, extracted from the Chinese herb-Rhodiola rosea, has advantages in antioxidant characteristics. However, their therapeutic efficacy and mechanisms in POF have not been explored. PURPOSE: This study aims to assess the therapeutic effects of salidroside in chemotherapy-induced ovarian failure rats. METHODS: A POF rat model was established by injection of cyclophosphamide, followed by treatment with salidroside. The therapeutic effect of salidroside was evaluated based on hormone levels, follicle count, and reproductive ability. Oxidative stress injury was assessed by the detection of SOD enzyme activity and MDA levels. Differential gene expression of Keap1, Nrf2, HMOX1, NQO1, AMH, BMP15, and GDF9, were identified by qRT­PCR. The protein expression of Keap1, Nrf2, P53, and Bcl-2 were detected by western blot. RESULTS: Salidroside treatment markedly restored FSH, E2, and AMH hormone secretion levels, reduced follicular atresia, and increased antral follicle numbers in POF rats. In addition, salidroside improves fertility in POF rats, activates the Nrf2 signaling pathway, and reduces the level of oxidative stress. The recovery function of high dose salidroside (50 mg/kg) in a reproductive assay was significantly improved than that of lower dose salidroside (25 mg/kg). Meanwhile, the safety evaluation of salidroside treatment in rats showed that salidroside was safe for POF rats at doses of 25-50 mg/kg. CONCLUSIONS: Salidroside therapy improved premature ovarian failure significantly through antioxidant function and activating Nrf2 signaling.


Asunto(s)
Glucósidos , Fenoles , Insuficiencia Ovárica Primaria , Humanos , Ratas , Femenino , Animales , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/patología , Proteína 1 Asociada A ECH Tipo Kelch , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Factor 2 Relacionado con NF-E2 , Atresia Folicular , Ciclofosfamida/efectos adversos , Hormonas
6.
Mol Nutr Food Res ; 68(5): e2300784, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38314939

RESUMEN

SCOPE: Premature ovarian insufficiency (POI) is a common female infertility problem, with its pathogenesis remains unknown. The NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis has been proposed as a possible mechanism in POI. This study investigates the therapeutic effect of α-ketoglutarate (AKG) on ovarian reserve function in POI rats and further explores the potential molecular mechanisms. METHODS AND RESULTS: POI rats are caused by administration of cyclophosphamide (CTX) to determine whether AKG has a protective effect. AKG treatment increases the ovarian index, maintains both serum hormone levels and follicle number, and improves the ovarian reserve function in POI rats, as evidence by increased the level of lactate and the expression of rate-limiting enzymes of glycolysis in the ovaries, additionally reduced the expression of NLRP3, Gasdermin D (GSDMD), Caspase-1, Interleukin-18 (IL-18), and Interleukin-1 beta (IL-1ß). In vitro, KGN cells are treated with LPS and nigericin to mimic pyroptosis, then treated with AKG and MCC950. AKG inhibits inflammatory and pyroptosis factors such as NLRP3, restores the glycolysis process in vitro, meanwhile inhibition of NLRP3 has the same effect. CONCLUSION: AKG ameliorates CTX-induced POI by inhibiting NLRP3-mediated pyroptosis, which provides a new therapeutic strategy and drug target for clinical POI patients.


Asunto(s)
Reserva Ovárica , Insuficiencia Ovárica Primaria , Humanos , Ratas , Femenino , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácidos Cetoglutáricos/farmacología , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Piroptosis , Células de la Granulosa/metabolismo , Inflamasomas/metabolismo
7.
Adv Med Sci ; 69(1): 70-80, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387407

RESUMEN

PURPOSE: Metformin (MET), a first-line treatment for type 2 diabetes mellitus, restores ovarian function in women with polycystic ovary syndrome. MET has been shown to increase the rate of success for in vitro fertilization when utilized in assisted reproductive technologies. This study was designed to examine the impact of MET on ovarian function and fertility in a mouse model of galactose-induced premature ovarian insufficiency (POI). We further investigated the underlying mechanisms. MATERIALS AND METHODS: Female mice were divided into 4 groups: saline, d-galactose, d-galactose â€‹+ â€‹MET, and MET. Body weight, ovarian index, and fertility were assessed. The hormonal profile was done. Advanced glycation end products (AGEPs), receptor for advanced glycation end products (RAGE), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), forkhead box O3a (FOXO3a) expression were measured. Ovarian follicle counting and morphology were analyzed. Immunohistochemistry of cleaved caspase-3 expression was performed. RESULTS: Our findings demonstrated that MET reversed irregularities in the estrus cycle, enhanced the ovarian index, and improved the abnormal levels of hormones and AGEs induced by d-galactose. Furthermore, the expression levels of PI3K, Akt, FOXO3a, and RAGE were upregulated with d-galactose. However, MET attenuated their expression levels. The primordial follicles ratio was improved, whereas atretic follicles and apoptotic-related cleaved caspase-3 expression were decreased in the d-galactose â€‹+ â€‹MET group compared to the d-galactose group. CONCLUSION: This study demonstrates that MET partially rescued ovarian dysfunction and apoptosis induced by d-galactose via a mechanism involving PI3K-Akt-FOXO3a pathway. Our finding proposed that MET may be a promising alternative treatment for POI.


Asunto(s)
Proteína Forkhead Box O3 , Galactosa , Metformina , Fosfatidilinositol 3-Quinasas , Insuficiencia Ovárica Primaria , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Femenino , Animales , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/patología , Proteína Forkhead Box O3/metabolismo , Ratones , Metformina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos
8.
Sci Rep ; 14(1): 1447, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228655

RESUMEN

Premature ovarian failure (POF) caused by chemotherapy is a growing concern for female reproductive health. The use of metformin (MET), which has anti-oxidative and anti-inflammatory effects, in the treatment of POF damaged by chemotherapy drugs remains unclear. In this study, we investigated the impact of MET on POF caused by cyclophosphamide (CTX) combined with busulfan (BUS) and M1 macrophages using POF model mice and primary granule cells (GCs). Our findings demonstrate that intragastric administration of MET ameliorates ovarian damage and alleviates hormonal disruption in chemotherapy-induced POF mice. This effect is achieved through the reduction of inflammatory and oxidative stress-related harm. Additionally, MET significantly relieves abnormal inflammatory response, ROS accumulation, and senescence in primary GCs co-cultured with M1 macrophages. We also observed that this protective role of MET is closely associated with the AMPK/PPAR-γ/SIRT1 pathway in cell models. In conclusion, our results suggest that MET can protect against chemotherapy-induced ovarian injury by inducing the expression of the AMPK pathway while reducing oxidative damage and inflammation.


Asunto(s)
Antineoplásicos , Metformina , Insuficiencia Ovárica Primaria , Humanos , Ratones , Femenino , Animales , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/prevención & control , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Metformina/uso terapéutico , Células de la Granulosa/metabolismo , Antineoplásicos/farmacología
9.
J Ethnopharmacol ; 323: 117718, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38181933

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: It has been reported that apoptosis and oxidative stress are related to cyclophosphamide (CYC)-induced premature ovarian failure (POF). Therefore, anti-apoptotic and anti-oxidative stress treatments exhibit therapeutic efficacy in CYC-induced POF. Danggui Shaoyao San (DSS), which has been extensively used to treat gynecologic diseases, is found to inhibit apoptosis and reduce oxidative stress. However, the roles of DSS in regulating apoptosis and oxidative stress during CYC-induced POF, and its associated mechanisms are still unknown. AIM OF THE STUDY: This work aimed to investigate the roles and mechanisms of DSS in inhibiting apoptosis and oxidative stress in CYC-induced POF. MATERIALS AND METHODS: CYC (75 mg/kg) was intraperitoneally injected in mice to construct the POF mouse model for in vivo study. Thereafter, alterations of body weight, ovary morphology and estrous cycle were monitored to assess the ovarian protective properties of DSS. Serum LH and E2 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was employed for examining ovarian pathological morphology and quantifying follicles in various stages. Meanwhile, TUNEL staining and apoptosis-related proteins were adopted for evaluating apoptosis. Oxidative stress was measured by the levels of ROS, MDA, and 4-HNE. Western blot (WB) assay was performed to detect proteins related to the SIRT1/p53 pathway. KGN cells were used for in vitro experiment. TBHP stimulation was carried out for establishing the oxidative stress-induced apoptosis cell model. Furthermore, MTT assay was employed for evaluating the protection of DSS from TBHP-induced oxidative stress. The anti-apoptotic ability of DSS was evaluated by hoechst/PI staining, JC-1 staining, and apoptosis-related proteins. Additionally, the anti-oxidative stress ability of DSS was measured by detecting the levels of ROS, MDA, and 4-HNE. Proteins related to SIRT1/p53 signaling pathway were also measured using WB and immunofluorescence (IF) staining. Besides, SIRT1 expression was suppressed by EX527 to further investigate the role of SIRT1 in the effects of DSS against apoptosis and oxidative stress. RESULTS: In the in vivo experiment, DSS dose-dependently exerted its anti-apoptotic, anti-oxidative stress, and ovarian protective effects. In addition, apoptosis, apoptosis-related protein and oxidative stress levels were inhibited by DSS treatment. DSS treatment up-regulated SIRT1 and down-regulated p53 expression. From in vitro experiment, it was found that DSS treatment protected KGN cells from TBHP-induced oxidative stress injury. Besides, DSS administration suppressed the apoptosis ratio, apoptosis-related protein levels, mitochondrial membrane potential damage, and oxidative stress. SIRT1 suppression by EX527 abolished the anti-apoptotic, anti-oxidative stress, and ovarian protective effects, as discovered from in vivo and in vitro experiments. CONCLUSIONS: DSS exerts the anti-apoptotic, anti-oxidative stress, and ovarian protective effects in POF mice, and suppresses the apoptosis and oxidative stress of KGN cells through activating SIRT1 and suppressing p53 pathway.


Asunto(s)
Menopausia Prematura , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratones , Animales , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/prevención & control , Proteína p53 Supresora de Tumor/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo , Estrés Oxidativo , Apoptosis , Ciclofosfamida/toxicidad , Transducción de Señal
10.
Aging (Albany NY) ; 16(1): 844-856, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38206302

RESUMEN

Premature ovarian insufficiency (POI) is a diverse form of female infertility characterized by a decline in ovarian function before the age of 40. Melatonin (MT) is a potential clinical treatment for restoring or safeguarding ovarian function in POI. However, the specific therapeutic mechanism underlying this effect remains unclear. To address this, we conducted experiments using human granulosa cells (GCs) from both POI and normal patients. We examined the expression levels of autophagy-related genes and proteins in GCs through qRT-PCR and western blot analysis. Autophagy flux was monitored in GCs infected with GFP-LC3-adenovirus, and the regulatory function of MT in autophagy was investigated. Additionally, we employed pharmacological intervention of autophagy using 3-Methyladenine (3-MA) and RNA interference of Forkhead box O-3A (FOXO3A) to elucidate the mechanism of MT in the autophagy process. Compared to GCs from normal patients, GCs from POI patients exhibited irregular morphology, decreased proliferation, increased apoptosis, and elevated ROS levels. The expression of autophagy-related genes was downregulated in POI GCs, resulting in reduced autophagic activity. Furthermore, MT levels were decreased in POI GCs, but exogenous MT effectively activated autophagy. Mechanistically, melatonin treatment downregulated FOXO3A expression and induced phosphorylation in POI GCs. Importantly, silencing FOXO3A abolished the protective effect of melatonin on GCs. These findings indicate that autophagy is downregulated in POI GCs, accompanied by a deficiency in MT. Moreover, we demonstrated that supplementing MT can rescue autophagy levels and enhance GC viability through the activation of FOXO3A signaling. Thus, MT-FOXO3A may serve as a potential therapeutic target for POI treatment.


Asunto(s)
Melatonina , Insuficiencia Ovárica Primaria , Femenino , Humanos , Autofagia , Células de la Granulosa/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/metabolismo , Transducción de Señal
11.
J Ovarian Res ; 17(1): 24, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273341

RESUMEN

Premature ovarian failure (POF) is a leading cause of women's infertility without effective treatment. The purpose of this study was to investigate the protective effects of Luffa cylindrica fermentation liquid (LF) on cyclophosphamide (CTX) -induced POF in mice and to preliminarily investigate the underlying mechanisms. Thirty-two Balb/c mice were divided into four groups randomly. One group served as the control, while the other three received CTX injections to establish POF models. A 14-day gavage of either 5 or 10 µL/g LF was administered to two LF pretreatment groups. To analyze the effects of LF, the ovarian index, follicle number, the levels of serum sex hormones, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), inflammatory factors, and apoptosis of the ovarian cells were measured. The effects of LF pretreatment on the expression of TLR4/NF-κB and apoptosis pathways were also evaluated. We found that LF pretreatment increased the ovarian index and the number of primordial and antral follicles while decreasing those of atretic follicles. LF pretreatment also increased the serum levels of estradiol (E2) and anti-Müllerian hormone (AMH), while decreasing those of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Furthermore, LF pretreatment increased the levels of SOD and GSH in the ovaries, while decreasing those of MDA, tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß). LF administration reduced the amount of TUNEL+ ovarian cells and the levels of TLR4 and NF-κB P65 protein expression. In conclusion, LF has antioxidant, anti-inflammatory as well as anti-apoptotic effects against CTX-induced POF, and the inhibition of TLR4/NF-κB and apoptosis pathways may be involved in its mechanisms.


Asunto(s)
Luffa , Menopausia Prematura , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratones , Animales , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/metabolismo , Luffa/metabolismo , FN-kappa B/metabolismo , Fermentación , Receptor Toll-Like 4/metabolismo , Ciclofosfamida/toxicidad , Estrés Oxidativo , Apoptosis , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Glutatión , Superóxido Dismutasa/metabolismo
12.
Biochem Biophys Res Commun ; 696: 149506, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38224665

RESUMEN

AIM: To evaluate the synergistic effect of combined treatment with melatonin (MEL) and resveratrol (RES) in cisplatin (CIS)-induced premature ovarian failure (POF) model in rats and to elucidate the molecular mechanism of this therapeutic effect. MATERIAL & METHODS: Female Sprague Dawley rats were divided into 7 experimental groups as follows; CONT (Control), CIS, MEL, RES, POF + MEL, POF + RES, and POF + MEL + RES. H&E staining was performed to evaluate follicular cell vacuolization/degeneration, vascular congestion/hemorrhage, and inflammation, by using an ordinal scale from 0 to 4 to grade the severity of observed changes (0 = normal, 1 = mild, 2 = moderate, 3 = severe, 4 = very severe). Zona pellucida integrity and connective tissue amount in the ovarian tissue were detected using PAS & Masson Trichrome staining. The immunofluorescence method was used to determine the immune localizations of pH2Ax, SIRT1, FOXO3a, and BCL2. The connective tissue amounts and immunoreactivity staining intensities were measured using ImageJ. The gene expression of SIRT1, FOXO3a, and BCL2 was determined using RT-PCR. Serum estrogen hormone levels were measured by ELISA. Statistically, Bonferroni correction was performed, and p < 0.002 were considered significant. RESULTS: A significant difference was observed in the POF group compared to the CONT group in all parameters except tertiary follicle count and hemorrhage. The decrease in the number of atretic follicles in the POF + MEL + RES group was found significant compared to both POF + MEL and POF + RES groups. The expression of pH2Ax, SIRT1, FOXO3a, and BCL2 at the protein level and SIRT1 and BCL2 at the mRNA level were significant in the POF + MEL + RES group compared to the POF group. Between the single and combination treatment groups, the difference in protein level was found in pH2Ax, SIRT1, FOXO3a, and BCL2 expression. The POF + MEL + RES group exhibited significantly higher SIRT1 mRNA expression compared to the groups receiving single treatments. CONCLUSION: The present study provides evidence that MEL and RES have synergistic effects in preventing the decrease in follicle reserve and increase in DNA break (pH2Ax) and follicle atresia in POF ovaries. This therapeutic effect is mediated by SIRT1 overexpression and activation of the SIRT1/FOXO3a/BCL2 pathway.


Asunto(s)
Melatonina , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratas , Animales , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/inducido químicamente , Resveratrol , Melatonina/farmacología , Melatonina/uso terapéutico , Sirtuina 1/genética , Sirtuina 1/metabolismo , Ratas Sprague-Dawley , Cisplatino/uso terapéutico , Hemorragia , ARN Mensajero , Proteínas Proto-Oncogénicas c-bcl-2
13.
Gene ; 901: 148128, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181927

RESUMEN

Cyclophosphamide (CP), as an anti-cancer drug, is frequently used to treat various types of cancer. A decreased number of ovarian follicles impaired normal ovarian function, and subsequent premature ovarian failure (POF) presented as a side effect of cyclophosphamide usage. These events may eventually affect the fertility rate of individuals. The present study showed the effect of cyclophosphamide on ovarian reserves and the protective effect of L-carnitine (LC) as an antioxidant to prevent POF. To design the study, six to eight-week-old NMRI female mice were divided into three groups: control, cyclophosphamide (CP), and cyclophosphamide + L-carnitine (CP + LC). Mice received drugs intraperitoneally (IP) for 21 days. In the following 24 h after the last injection, both ovaries were used to evaluate the expression of Sohlh1 and Lhx8 genes by Real-time PCR. Furthermore, the alteration of Lhx8 promoter methylation was examined by Methylation-sensitive high-resolution melting analysis (MS-HRM). The present data showed the negative effect of CP on regulator genes of oogenesis including Sohlh1 and Lhx8. In addition, an examination of the epigenetic status of the Lhx8 gene showed a change in promoter methylation of this gene following cyclophosphamide injection. Although, L-carnitine is an effective antioxidant in relieving oxidative stress caused by cyclophosphamide and its damage, in the present study, however, the use of L-carnitine failed to protect the ovaries from changes caused by CP injection. So, using cyclophosphamide can alter the expression of folliculogenesis genes through its effects on epigenetic changes and may cause POF. The results of the present study showed that L-carnitine consumption can't protect the ovaries against the adverse effects of CP.


Asunto(s)
Antioxidantes , Insuficiencia Ovárica Primaria , Humanos , Ratones , Femenino , Animales , Antioxidantes/farmacología , Factores de Transcripción , Carnitina/farmacología , Carnitina/uso terapéutico , Ciclofosfamida/efectos adversos , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/genética , Epigénesis Genética , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
J Ethnopharmacol ; 324: 117782, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38272104

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Zishen Yutai pills (ZYP), a Chinese medicinal formulation derived from the Qing Dynasty prescription "Shou Tai pills", have been documented to exhibit beneficial effects in clinical observations treating premature ovarian failure (POF). However, the anti-POF effects and its comprehensive systemic mechanism have not yet been clarified. AIM OF THE REVIEW: Therapeutic effects and systemic mechanism of ZYP in POF were evaluated. MATERIALS AND METHODS: After pulverization, sieving, and stirring, ZYP was administered intragastrically to cisplatin-induced POF mice at a dose of 1.95 mg/kg/d for 14 days. The anti-POF effects of ZYP were investigated by assessing the number of ovarian follicles at different developmental stages, as well as measuring serum estradiol (E2) levels and ovarian-expressed anti-Müllerian hormone (AMH). Reproductive performance and offspring health were evaluated to predict fertility restoration. Furthermore, a combination of proteomic and metabolomic profiling was employed to elucidate the underlying molecular mechanism of ZYP in treating POF. Western blot (WB) analyses and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to explore the mechanisms through which ZYP exerted its anti-POF effects. RESULTS: We have demonstrated that oral administration of ZYP reversed the reduction in follicles at different developmental stages and stimulated the expressions of serum E2 and ovarian-expressed AMH in a cisplatin-induced POF model. Additionally, ZYP ameliorated follicle apoptosis in ovaries affected by cisplatin-induced POF. Furthermore, treatment with ZYP restored the quantity and quality of oocytes, as well as enhanced fertility. Our results revealed 62 differentially expressed proteins (DEPs) through proteomic analyses and identified 26 differentially expressed metabolites (DEMs) through metabolomic analyses. Both DEPs and DEMs were highly enriched in the arachidonic acid (AA) metabolism pathway. ZYP treatment effectively upregulated the protein and mRNA expression of critical targets in AA metabolism and the AKT pathway, including CYP17α1, HSD3ß1, LHR, STAR, and AKT, in cisplatin-induced POF mice. CONCLUSIONS: These results indicated that ZYP exerted protective effects against POF and restored fertility from cisplatin-induced apoptosis. ZYP could be a satisfying alternative treating POF.


Asunto(s)
Medicamentos Herbarios Chinos , Menopausia Prematura , Insuficiencia Ovárica Primaria , Femenino , Humanos , Ratones , Animales , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/metabolismo , Ácido Araquidónico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cisplatino/efectos adversos , Proteómica , Fertilidad , Hormona Antimülleriana
15.
Menopause ; 31(1): 65-67, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086010

RESUMEN

Primary ovarian insufficiency (sometimes known as premature ovarian insufficiency) is a result of loss of ovarian follicular activity before the age of 40 years. It is an endocrine deficiency state in women, characterized by premature estrogen deprivation. In the absence of estrogen replacement, women experience bothersome menopause symptoms and a predisposition to accelerated aging and multimorbidity accumulation. Unless a true contraindication exists, estrogen therapy is recommended at least until the age of natural menopause. This Practice Pearl summarizes the clinical manifestations, diagnostic evaluation, and management of primary ovarian insufficiency.


Asunto(s)
Menopausia Prematura , Insuficiencia Ovárica Primaria , Femenino , Humanos , Adulto , Insuficiencia Ovárica Primaria/diagnóstico , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Terapia de Reemplazo de Estrógeno , Menopausia , Estrógenos/uso terapéutico
17.
J Ethnopharmacol ; 322: 117625, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145859

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Classical prescriptions are not only a primary method of clinical treatment in traditional Chinese medicine (TCM) but also represent breakthroughs in the inheritance and development of this field. Kuntai capsule (KTC), a formulation based on a classical prescription, comprises six TCMs: Rehmanniae Radix Praeparata, Coptidis Rhizoma, Paeoniae Radix Alba, Scutellariae Radix, Asini Corii Colla, and Poria. This formulation possesses various beneficial effects, such as nourishing yin and blood, clearing heat and purging fire, and calming the nerves and relieving annoyance. The investigation of the efficacy and mechanism of KTC in regulating anti-aging factors in the treatment of premature ovarian insufficiency (POI) is not only a prominent topic in classical prescription research but also a crucial issue in the treatment of female reproductive aging using TCM. AIM OF THE STUDY: To evaluate the therapeutic effect of KTC on POI and its underlying mechanism. MATERIALS AND METHODS: Healthy and specific pathogen-free (SPF) female Kunming mice aged 6-8 weeks were selected. After acclimatization, the mice were randomly divided into a control, model, and high, middle, and low dose groups of KTC (1.6, 0.8, and 0.4 mg/kg, respectively). Except for the control group, the animals in the other groups were administered a single intraperitoneal injection of 120 mg/kg cyclophosphamide and 30 mg/kg Busulfan to induce the model of POI. After modeling, the mice were treated with the corresponding drugs for 7 days. Serum and ovarian tissues were collected, and the levels of serum follicle-stimulating hormone (FSH), estradiol (E2), and superoxide dismutase 2 (SOD2) were determined using enzyme-linked immunosorbent assay (ELISA). The chemical composition of KTC was characterized and analyzed using ultra-high-pressure liquid chromatography-linear ion trap-Orbitrap tandem mass spectrometry. A "drug-component-target-pathway-disease" network was constructed using network pharmacology research methods to identify the key active components of KTC in treating POI and to elucidate its potential mechanism. The protein expression of the FOXO3/SIRT5 pathway was detected by western blotting. RESULTS: Compared to the model group, the high-dose group of KTC showed a significant increase in ovarian index, significant increase in levels of E2 and SOD2, and a significant decrease in FSH levels. Through systematic analysis of the chemical constituents of KTC, 69 compounds were identified, including 7 organic acids, 14 alkaloids, 28 flavonoids, 15 terpenoids, 2 lignans, 2 phenylpropanoids, and 1 sugar. Based on network pharmacology research methods, it was determined that KTC exerts its therapeutic effect on POI through multiple components (paeoniflorin and malic acid), multiple targets (FOXO3 and SIRT5), and multiple pathways (prolactin signaling pathway, longevity regulating pathway, and metabolic pathways). The accuracy of the network pharmacology prediction was further validated by detecting the protein expression of SIRT5 and FOXO3a, which showed a significant increase in the middle and high-dose groups of KTC compared to the model group. CONCLUSIONS: KTC may effectively treat POI through a multi-component, multi-target, multi-pathway approach, providing an experimental basis for using KTC based on classical prescriptions in the treatment of POI.


Asunto(s)
Medicamentos Herbarios Chinos , Menopausia Prematura , Insuficiencia Ovárica Primaria , Sirtuinas , Ratones , Humanos , Femenino , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Transducción de Señal , Hormona Folículo Estimulante , Proteína Forkhead Box O3
18.
Sci Rep ; 13(1): 19016, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923747

RESUMEN

To investigate the molecular mechanism of Yiwei Decoction (YWD) in preventing Premature ovarian insufficiency (POI)-related osteoporosis from the hypothalamic perspective , and to screen for the key active and acting molecules in YWD. Cyclophosphamide was used to create the POI rat model. Groups A, B, and C were established. The Model + YWD group was group A, the model control group was group B, and the normal control group was group C. ELISA was used to determine serum GnRH and FSH levels after gavage. The transcription levels of mRNAs in each group's hypothalamus tissues were examined using RNA-seq sequencing technology. The GSEA method was used to enrich pathways based on the gene expression levels of each group. The TCM-active ingredient-target-disease network map was created using differentially expressed mRNAs (DEmRNAs) and network pharmacology. The molecular docking method was employed to investigate the affinity of the active ingredient with key targets. GnRH and FSH levels in POI rats' serum were reduced by YWD. Between groups A and B, there were 638 DEmRNAs (P < 0.05) and 55 high-significance DEmRNAs (P-adjust < 0.01). The MAPK, Hedgehog, Calcium, and B cell receptor pathways are primarily enriched in DEmRNAs from Group A and Group B. The GSEA pathway enrichment analysis indicates that YWD may regulate Long-term potentiation, Amphetamine addiction, and the Renin-angiotensin system and play a role in preventing osteoporosis. The Chinese herbal medicine (CHM)-Active ingredient-Target-disease network map includes 137 targets, 4 CHMs, and 22 active ingredients. The result of docking indicated that Stigmasterol, interacts well with the core proteins ALB, VCL and KAT5. Following the screening, we identified the targets, active components, and key pathways associated with YWD osteoporosis prevention. Most of these key targets and pathways are associated with osteoporosis, but further experimental validation is required.


Asunto(s)
Medicamentos Herbarios Chinos , Osteoporosis , Insuficiencia Ovárica Primaria , Animales , Ratas , Femenino , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Transcriptoma , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/genética , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Hormona Liberadora de Gonadotropina , Hormona Folículo Estimulante , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
19.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4774-4781, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802816

RESUMEN

This study aims to observe the effect and explore the mechanism of Qirong Tablets in the treatment of premature ovarian insufficiency(POI) in mice via the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/hypoxia inducible factor 1(HIF-1) signaling pathway. Sixty SPF female BALB/c mice were randomly divided into normal group, model group, positive control group, Qirong Tablets low-, medium-and high-dose group. The normal group was intraperitoneally injected with the same amount of normal saline, and the other groups were intraperitoneally injected with cyclophosphamide 120 mg·kg~(-1)·d~(-1) once to establish a POI animal model. After the model was successfully established, the low-, medium-and high-dose groups of Qirong Tablets were administered orally with 0.6, 1.2, 2.4 mg·kg~(-1)·d~(-1) respectively. The positive control group was given 0.22 mg·kg~(-1)·d~(-1) Clementine Tablets by intragastric administration, and the normal group and model group were given intragastric administration with the same amount of normal saline, and the treatment was 28 d as a course of treatment. After drug intervention, enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of estradiol(E_2), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and anti-mullerian hormone(AMH) in peripheral blood, and hematoxylin-eosin(HE) staining to observe the ovarian tissue. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay was used to detect the apoptosis of granulosa cells, and Western blot to determine the expression levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, PI3K, Akt, and HIF-1. Compared with the normal group, the modeling of POI caused loose or destroyed ovarian tissue with vacuolar structures, edema and fibrosis in the ovarian interstitium, disordered or loose arrangement of granulosa cells, and reduced normal follicles. Compared with the model group, drug interventions restored the ovarian tissue and follicles at all the development stages and reduced atretic follicles. Compared with the normal group, the modeling of POI lowered the serum level of E_2 and AMH(P<0.01), and elevated the level of FSH and LH(P<0.01). Compared with the model group, high-dose Qirong Tablets elevated the levels of E_2 and AMH(P<0.05), and lowered the levels of FSH and LH(P<0.05). Compared with the normal group, the modeling of POI up-regulated the protein levels of PI3K, Akt, HIF-1, Bax, and caspase-3 and down-regulated the protein level of Bcl-2 in the ovarian tissue(P<0.01). Compared with the model group, low-, medium-, and high-dose Qirong Tablets down-regulated the protein levels of PI3K, Akt, HIF-1, Bax, and caspase-3 proteins and up-regulated the protein level of Bcl-2 in the ovarian tissue(P<0.05). In conclusion, Qirong Tablets can up-regulate the expression Bcl-2, down-regulate the expression of Bax and caspase-3 in POI mice. Qirong Tablets may inhibit the apoptosis of follicular granulosa cells in mice, thereby delaying ovarian aging, improving reproductive axis function, and strengthening ovarian reserve capacity, which may be associated with the inhibition of PI3K/Akt/HIF-1 pathway.


Asunto(s)
Insuficiencia Ovárica Primaria , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Femenino , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína X Asociada a bcl-2 , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Caspasa 3/metabolismo , Solución Salina/farmacología , Solución Salina/uso terapéutico , Transducción de Señal , Células de la Granulosa , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis
20.
Front Endocrinol (Lausanne) ; 14: 1184977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854196

RESUMEN

Objectives: To evaluate the effects and mechanisms of action of growth hormone (GH) in the recovery of ovarian function in ovarian insufficiency induced by cyclophosphamide (CP) in a mouse model. Materials and methods: After inducing ovarian insufficiency by administering 400 mg/kg of CP intraperitoneally to 6-week-old ICR mice, the mice were divided into four groups (control, CP, 1 mg/kg GH, and 2 mg/kg GH) with 10 mice in each group. GH was administered a week later for 7 days. Five mice from each group were sacrificed the next day, and their ovaries were collected for histological examination. The remaining mice were superovulated for in vitro fertilization (IVF). The terminal deoxynucleotidyl transferase dUTP-nick end labeling assay was performed to detect apoptosis. Masson's trichrome staining was used to analyze the degree of fibrosis. To quantify angiogenesis, CD31 immunohistochemistry was performed. Angiogenesis-related gene expression profiles were assessed using quantitative reverse transcription polymerase chain reaction. Results: CP induced the loss of non-growing (primordial and primary) follicles while GH significantly protected primordial follicles and increased follicular quality. The CP group showed a decrease in fertilization and blastocyst formation rates in IVF. In contrast, the GH treatment group showed dose-dependent enhanced IVF outcomes. Furthermore, GH treatment decreased apoptosis and stromal fibrosis and increased angiogenesis. Many genes involved in angiogenesis, especially Leptin (Lep), platelet endothelial cell adhesion molecule 1 (Pecam-1), and angiogenin (Ang) were up-regulated in the GH treatment groups. Conclusion: GH treatment may promote the recovery of ovarian function in ovarian insufficiency induced by the administration of CP via decreasing apoptosis and stromal fibrosis and upregulating Lep, Pecam-1, and Ang genes.


Asunto(s)
Hormona de Crecimiento Humana , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratones , Animales , Hormona del Crecimiento , Recuperación de la Función , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Ratones Endogámicos ICR , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/metabolismo , Ciclofosfamida , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...